A publication of the National Wildfire Coordinating Group

Guide to Preventing Aquatic Invasive Species Transport by Wildland Fire Operations

PMS 444

JANUARY 2017

Guide to Preventing Aquatic Invasive Species Transport by Wildland Fire Operations

January 2017 PMS 444

The *Guide to Preventing Aquatic Invasive Species (AIS) Transport by Wildland Fire Operations* is a product of, and maintained by, the Invasive Species Subcommittee (ISSC), a component of the Equipment Technology Committee of the National Wildfire Coordinating Group (NWCG). The ISSC provides national leadership in the prevention of invasive species transport by wildland fire mobile equipment and related vehicles, and its primary objectives are to:

- Develop and disseminate practical standards, guidelines, best practices, and recommendations to prevent the spread of invasive species.
- Integrate new and evolving information from the natural resource management community into the invasive species control effort.
- Evaluate and recommend wildland fire and support vehicle utilization and/or decontamination techniques, equipment, or products to minimize invasive species transport.

Questions and comments may be emailed to: <u>BLM_FA_NWCG_Products@blm.gov</u>.

This publication is available electronically from the NWCG Web site at: https://www.nwcg.gov/publications/444.

Previous editions: First Edition

The National Wildfire Coordinating Group (NWCG) has approved the contents of this publication for the guidance of its member agencies and is not responsible for the interpretation or use of this information by anyone else.

NWCG's intent is to specifically identify all copyrighted content used in NWCG publications. All other NWCG information is in the public domain. Use of public domain information, including copying, is permitted. Use of NWCG information within another document is permitted, if NWCG information is accurately credited to the NWCG. The NWCG logo may not be used except on NWCG authorized information. "National Wildfire Coordinating Group", "NWCG", and the NWCG logo are trademarks of the National Wildfire Coordinating Group.

The use of trade, firm, or corporation names or trademarks in this publication is for the information and convenience of the reader and does not constitute an endorsement by the National Wildfire Coordinating Group or its member agencies of any publication or service to the exclusion of others that may be suitable.

Acknowledgements

The following members of the Invasive Species Subcommittee of the Equipment Technology Committee/ National Wildfire Coordination Group (NWCG) were instrumental in the development of this Guide:

Current Membership

Julie Laufmann – Chair; USDA Forest Service
Cynthia Tait – Co-chair; USDA Forest Service
Lou Ballard – Primary member; USDI Fish and Wildlife Service
Justin Boeck – Advisor; USDI Bureau of Land Management
Myron Chase – Primary member; USDI National Park Service
Matt Cnudde – Primary member; USDA Forest Service
Myron Hotinger – Primary member; previous chair; Bureau of Indian Affairs
Richard Schwab – Advisor; USDI National Park Service
Clint Sestrich – Advisor; USDA Forest Service
David Shy – CAL FIRE
Kristy Swartz – Primary member; USDI Bureau of Land Management
Previous Membership
Ryan Becker – Chair; USDA Forest Service
Tate Fischer – USDI Bureau of Land Management
Other Reviewers
NWCG National Interagency Aviation Committee (NIAC)
NWCG Equipment Technical Committee, Mobile Equipment Subcommittee
Sam Wu and Ralph Gonzales – USDA Forest Service, San Dimas Technology and Development Center
Todd Neel – USDA Forest Service
Cody Peel – USDA Forest Service
Terry Swinscoe – USDA Forest Service
Robert Button – SEI Industries Inc.
Thanks to San Dimas Technology and Development Center (SDTC) staff members Carl Schaefer and Ar

Thanks to San Dimas Technology and Development Center (SDTC) staff members Carl Schaefer and Armando Sanchez for their assistance in foot valve and engine tests. Also, thanks to Rocky Mountain and Redmond Cache staff Marcus Medina and Eve Ponder for providing footvalves for testing.

Table of Contents

Chapter 1 Purpose	4
Chapter 2 Aquatic Invasive Species and Why We Care.	4
WHAT ARE THEY?	
WHY DO WE CARE?	
WHERE DO AIS COME FROM?	4
HOW DO AIS GET MOVED AROUND?	4
HOW IS FIRE EQUIPMENT AFFECTED BY AIS?	
Chapter 3 Guidelines and Best Management Practices	
GENERAL PREVENTION	
Chapter 4 Ground Operations	
WATER HANDLING OPERATIONS	
DECONTAMINATING GROUND EQUIPMENT	
Chapter 5 Aviation Operations	
GENERAL PREVENTION	
DECONTAMINATING AVIATION EQUIPMENT	8
DECONTAMINATING ACCESSIBLE INTERNAL TANKS	
Chapter 6 AIS Prevention for Resource Advisors	
LOCATING AQUATIC INVASIVE SPECIES	
IDENTIFYING HIGH PRIORITY AQUATIC RESOURCES	
UNDERSTAND AIS AND HOW FIRE ACTIVITIES CAN S	
KNOW THE BMPS AND DECONTAMINATION PROTOCO	
INTERNAL ENGINE TANKS AND DRAFTING METHODS	511
PREPAREDNESS: DECONTAMINATION PERSONNEL, E	QUIPMENT, AND SUPPLIES12
Appendix A: Decontaminating with Chemical Disinfectant	
TO DECONTAMINATE GEAR WITH QUAT DISINFECTA	
TO DECONTAMINATE GEAR WITH CHLORINE BLEAC	
CHEMICAL DISPOSAL	14
SUPPLY SOURCES	
Appendix B: Field Testing Foot Valves for Leaks	
BACKGROUND INFORMATION	
EQUIPMENT LIST	
LOW PRESSURE TEST (3-5 PSI)	
HIGH PRESSURE TEST (130 PSI)	
Appendix C: Job Safety Risk Assessment Templates for D	
OPERATING HOT WATER PRESSURE WASHERS	
DISINFECTING FIELD GEAR WITH QUATERNARY AM	
DISINFECTING FIELD GEAR WITH CHLORINE BLEACH	H27

Appendix D: AQUATIC INVASIVE SPECIES of Concern to Firefighters and Disinfection	on Methods 31
ZEBRA & QUAGGA MUSSELS	32
ASIAN CLAM	35
NEW ZEALAND MUDSNAIL	
MALAYSIAN TRUMPET SNAIL	40
ORIENTAL MYSTERY SNAIL	42
FAUCET SNAIL	44
SPINY WATER FLEA	45
DIDYMO	47
CHYTRID FUNGUS	49
WHIRLING DISEASE	
VIRAL HEMORRHAGIC SEPTICEMIA	54
SPRING VIREMIA OF CARP	56
PORT ORFORD CEDAR ROOT DISEASE AND SUDDEN OAK DEATH	
AQUATIC INVASIVE PLANTS	60

Chapter 1 Purpose

The *Guide to Preventing Aquatic Invasive Species Transport by Wildland Fire Operations* is intended to help wildland firefighters avoid the spread of aquatic invasive species. The *Guide* includes:

- Best management practices (BMPs) to prevent contact with and spread of invasive species,
- The best procedures for decontaminating ground and aviation equipment,
- AIS prevention recommendations for resource advisors, and
- AIS of concern to firefighters nationwide and disinfection methods.

Chapter 2 Aquatic Invasive Species and Why We Care

WHAT ARE THEY?

Aquatic invasive species are harmful, non-native plants, animals, and microorganisms living in aquatic habitats that damage ecosystems or threaten commercial, agricultural, and recreational activities.

WHY DO WE CARE?

Firefighter and public safety is our first priority, but aquatic invasive plants and animals pose a risk to native species, hydropower facilities and water supplies, and to firefighting equipment. Avoidance and decontamination can prevent the spread of these organisms and help assure that firefighting equipment remains operational. See *Appendix D: Aquatic Invasive Species of Concern to Firefighters* for information on the species firefighting resources are most likely to encounter, including their distributions, disinfection methods, and references.

WHERE DO AIS COME FROM?

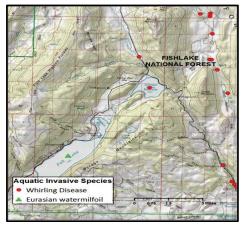
Aquatic invasive species can be found in the untreated water sources used in firefighting operations, either a natural source (a river or lake) or a human-made water body (a reservoir, canal, or stock tank) that has not been treated for municipal use or human consumption. Municipal water distributed via hydrants is not considered a reservoir of invasive species. Untreated water sources may harbor a variety of AIS, including quagga and zebra mussels, New Zealand mudsnails, whirling disease, didymo (or *rock snot*), and plants such as hydrilla, Eurasian watermilfoil, and giant salvinia, as well as many vertebrate species. In some cases, the occurrence of aquatic invasive species in a water body is well documented, but for many western waters such information is incomplete or nonexistent.

HOW DO AIS GET MOVED AROUND?

In wildland fire management, AIS can be transported via firefighting equipment that contacts or transports untreated water, such as portable pumps (including floatable pumps), portable tanks, helicopter buckets, and internal tanks of fire engines, water tenders, helicopters, and fixed wing aircraft. Typically, components of the equipment that cannot be drained and dried completely are most likely to harbor invasive species and thus serve as vectors. Residual water left in incompletely drained tanks in equipment moved between fire incidents is of special concern: quagga mussel larvae are able to survive 5 days in summer and 28 days in autumn in residual water contained within undrained boats (*Appendix D*, Choi et al. 2013), a time interval which is well within the re-deployment period for most firefighting equipment.

There are many possible invasion pathways for AIS within the context of wildland fire incident response. During an incident, untreated water is routinely moved between watersheds and sometimes between basins. Typically, large water bodies, such as reservoirs, serve as primary sources to fill various types of firefighting equipment, which then transport and disperse that water to other parts of the fire. In many fire incidents, helicopters equipped with snorkels and internal tanks or buckets draft or dip from untreated water sources, then may draft from a new source with contaminated gear.

HOW IS FIRE EQUIPMENT AFFECTED BY AIS?


Invasives such as zebra mussels and New Zealand mudsnails may adhere to the surfaces of tanks, pumps, and hoses. They can be transmitted to uncontaminated water sources if this equipment is not drained and dried completely or decontaminated.

Chapter 3 Guidelines and Best Management Practices

GENERAL PREVENTION

Preventing exposure to AIS through best management practices is the easiest and simplest way to control their spread.

- Map the distribution of aquatic invasive organisms in watersheds where the operation will take place (Figure 1). See Chapter 6 for sources for maps or GIS layers showing locations of AIS infested waters. You can never be certain that invasives are NOT present, but at least you will know ahead of time where they ARE known to be present.
- Fill tanks from municipal water sources whenever possible.
- When possible, avoid drafting from waterbodies with known infestations of aquatic invasive species.
- Avoid transferring water between drainages or between unconnected waters within the same drainage. Do not dump water from one waterbody (e.g., stream, lake, or reservoir) into another waterbody. Do not allow water from fold-a-tanks or pumpkins to drain into nearby waterways if the fold-a-tank was filled with water from a different drainage. Dispose of excess water over uplands.
- Avoid sucking organic and bottom material into water intakes when drafting from shallow water. Use screens. If collapsible tanks can be filled with municipal water, draft from those tanks instead of untreated water sources.
- Avoid entering (driving through) water bodies or wet areas when possible.
- Remove all plant parts and mud from external surfaces of gear and equipment after an operational period.

Figure 1. Map the distribution of aquatic invasive species on your unit. Aquatic plants and whirling disease are present in this watershed on Fishlake National Forest.

• Avoid obtaining water from multiple sources during a single operational period unless drafting/dipping equipment is decontaminated or changed out with clean equipment between sources.

• If contamination of equipment with untreated water or mud/plants is unavoidable, see "Decontaminating Ground Equipment" and "Decontaminating Aviation Equipment", below.

Chapter 4 Ground Operations

Of great concern for ground equipment is the possibility that residual tank water contaminated with AIS could be transferred to uncontaminated waterbodies during the drafting process. However, if proper drafting and water handling BMPs are used and foot valves are working correctly, there is low risk that contaminated tank water could "seep" into the drafting water source.

WATER HANDLING OPERATIONS

- When possible, fill engines from a municipal hydrant, a water tender, or from a pump assigned to a single drafting source.
- When spraying water to suppress a fire, avoid application of untreated water into local water bodies (ponds, lakes, rivers, streams, wetlands, seeps, or springs), especially if the water in the tank came from a different watershed (Figure 2). Water delivery equipment and accessories (e.g., fireline hoses, wye valves, nozzles) that do not transfer tank water to waterbodies do not need to be decontaminated.
- To prevent leakage and to maintain the prime, be sure that foot valves are screwed snugly onto drafting hoses and are fully closing and not leaking before and during drafting (Figure 3). If foot valves are leaking, refrain from drafting and replace foot valve with one that is operating properly. See *Appendix B* for methods to field test foot valves for leakage.

Figure 2. Water delivery equipment is low risk if contaminated water is pumped onto a fire and not applied to another waterbody.

Figure 3. Be sure foot valves are not leaking before and during drafting.

- Priming the engine pump for drafting —
- To minimize the potential for engine water leakage through the foot valve, *prime with water from the drafting source rather than using water from the engine tank* (Figure 4). When priming by filling the drafting hose with a bucket, first make sure that the bucket is clean so that it does not transfer AIS. Additionally, don't leave draft hose full with foot valve engaged and submerged in water source when not pumping.
- Elevate foot valves above the bottom of the waterbody for clean, sediment-free operation—for example, duct tape foot valve to a shovel or place the valve in a hard hat or bucket.

Figure 4. To minimize risk of engine water leakage through foot valve, prime with water from the drafting source rather than from the tank.

- Remove water drain plug/s from self-priming pumps (e.g., trash pumps) to empty pump housing before moving to a new waterbody.
- When filling the engine tank, avoid tank overflow into the water source.

DECONTAMINATING GROUND EQUIPMENT

- Before moving to a new water source (in a different watershed), decontaminate all external and internal surfaces of foot valve and draft hose. Three options are:
 - Power wash with hot water (140° F, allow spray to contact surfaces for 2 minutes) using a hot pressure washer (e.g., a 'Hotsy').
 OR
 - Dry the gear in the hot sun until completely dry to the touch (sunlight intensifies the decontamination process).
 OR
 - Use a chemical solution (see *Appendix A: Decontaminating with Chemical Disinfectants*). Surfaces of the drafting hose and foot valve can be decontaminated by coiling and submerging in a bucket filled with disinfectant (Figure 5) or by spray application with a backpack pump or a large spray bottle.
- Consider carrying spare, clean, dry draft hoses and foot valves to switch out with used ones when moving to a new water source.

Figure 5. If drying or hot water are not options, draft hoses with foot valves can be decontaminated by submerging in a bucket filled with disinfectant. Alternatively, disinfectant can be sprayed on.

Chapter 5 Aviation Operations

Aircraft such as air tankers and single engine air tankers, which use water from municipal sources, are unlikely to encounter AIS and are not addressed here. All other aircraft utilize untreated water and have the potential to transfer AIS.

GENERAL PREVENTION

- Avoid dipping or scooping water from multiple water sources within the same operational period to minimize cross-contamination of water sources.
- If possible, use water dipped from the same drainage that it will be dropped in. This can be accomplished by setting up heliwells (portable tanks/pumpkins) filled from small streams with Mark III pumps.
- Use deeper (blue) water whenever possible. Avoid areas that will intake mud or plants.
- Switch out a contaminated helicopter bucket with a clean bucket before moving to a new water source. Alternating used (possibly contaminated) helicopter buckets with spare (clean) buckets can save time and increase efficiency, as the first bucket can be decontaminated while the second bucket is being used.

Figure 6. Helicopter snorkels, such as on this Sky Crane, do not need priming so no risk of tank water leakage during drafting. However, snorkel ends and foot valves that touch untreated water must still be decontaminated.

• Helicopter snorkels do not need to be primed with either source or tank water, so there is no risk of residual tank water entering a water source during drafting operations (Figure 6). However, snorkel ends and foot valves that encounter untreated water must be decontaminated between drainages (see below).

DECONTAMINATING AVIATION EQUIPMENT

Chemicals such as bleach and quaternary ammonium compounds do not meet corrosion requirements for aluminum and **shall not be used on aircraft fuselages or water delivery components such as helicopter buckets and footvalves**.

- Visually inspect water handling equipment (snorkel hoses, pumps, foot valves, screens, buckets, intakes and tanks) for mud, debris, or plant parts daily, during maintenance, and after every water dropping mission, when possible. Remove plants and mud from external surfaces.
- When contact with untreated water has occurred or is suspected, decontamination is needed. Thorough drying in the hot sun alone is an easy and effective decontaminating method, though required drying times can vary with equipment materials (e.g., metal, rubber, fabric). Dry gear in the sun until it's completely dry to the touch. Drying may not be possible for a quick turnaround, so carry spare, clean gear to switch out with wet gear.
- Alternatively, clean and decontaminate accessible, exposed surfaces by power washing with hot water (140°F) for 2 minutes before moving to new, unconnected water sources or new incidents. If a helicopter bucket has a butyl (rubber) valve seal, avoid prolonged application of hot water spray to the seal to prevent softening of this vulnerable material. Power washing greatly reduces the likelihood that any target aquatic invasives are present.

• When hot water (140°F) is not available or practical, use potable water to flush invasive species from the system. Ensure that run-off cannot reach a water source.

DECONTAMINATING ACCESSIBLE INTERNAL TANKS

Accessible tanks have doors or other openings that allow access for cleaning. Scooper aircraft (CL215 or CL415, and Fire Boss), Sky Crane helicopters (CH-54/S-64), and other tanked helicopters are examples of aircraft with accessible tanks.

• Decontaminate internal tanks by spraying the internal surface with hot water (140°F) from a hot pressure washer (e.g., a 'Hotsy'). Allow spray to contact surface for at least 2 minutes. This method is recommended for scooper and Fire Boss aircraft (Figure 7). Tanked helicopters have tank doors that open widely from below for easy tank access and draining. Hot water spray or thoroughly dry these surfaces.

Figure 7. A CL-415 scooper plane fills its belly tanks [inset]. Workers decontaminate belly tanks of CL-415 scooper plane by spraying hot water from a high pressure wand and a portable hot washer, or 'Hotsy'.

Chapter 6 AIS Prevention for Resource Advisors

During fire events, Resource Advisors (READs) and Resource Advisors, Fireline (REAFs) play an integral part in guidance, facilitation of decontamination actions, acquisition of equipment, and education. Whether the READs have local knowledge or have been assigned to a fire from outside the area, they are a critical factor in reducing the risk of AIS spread.

LOCATING AQUATIC INVASIVE SPECIES

Maps of known AIS infestations are a valuable tool for READs to communicate which waterbodies to avoid for drafting (Figure 1, pg. 6). Currently there is no nationwide, central repository of maps or geospatial data identifying AIS infested waters, but regional or local information may be available. Ideally, mapping occurrence of AIS would be done as a preseason activity involving local aquatic specialists and fire staff. At that time, maps could be prepared and distributed to local fire staff who could then provide a handoff packet (if needed) during large fire events or for incoming personnel unfamiliar with the area. Bear in mind that many waterways have not been surveyed and the presence of aquatic invasive species may be unknown, which is why any source of untreated water could harbor AIS.

Maps or GIS layers showing locations of AIS infested waters for resource advising on a fire might be obtained from the following sources:

- Local agency administrators or aquatic specialists may have information. Sometimes local land management offices maintain AIS data and prepare maps as part of preseason planning.
- A number of agencies or States may also have AIS location data. These include:
 - United States Geological Survey (USGS) Nonindigenous Aquatic Species database (nationwide, does not include pathogens): <u>https://nas.er.usgs.gov/</u>

- US Forest Service
 - Intermountain Region (UT, NV, ID, western WY) <u>https://www.fs.usda.gov/detail/r4/landmanagement/resourcemanagement/?cid=fs</u> <u>bdev3_016100</u>
 - Pacific Northwest Region (OR, WA) <u>https://www.fs.fed.us/r6/fire/aquatic-invasive-species/</u>
- o Individual States' invasive species offices and Tribal fisheries offices
- IMapInvasives <u>http://imapinvasives.org/</u>, a web-based, publicly accessible (but password protected) database of invasive species location information. To date, only 10 states participate, mostly in the east.

Ideally, mapping of AIS sites (as spatial data, if possible, or as hard-copy maps) should be done preseason, and made available to air tanker bases or as a packet to Incident Commander and Fire Ops at the beginning of an incident.

Mapped AIS waterways are not currently included in the Wildland Fire Decision Support System (WFDSS). If preseason AIS mapping has not be completed, it is the responsibility of the READs to use their local knowledge of AIS occurrences to advise fire operations during a fire.

IDENTIFYING HIGH PRIORITY AQUATIC RESOURCES AT RISK

In addition to locating known AIS infestations, READS should also take into consideration which waters have high resource values for protection from an unintended AIS transfer. These values include waterbodies with native fish populations, recreational fisheries, municipal and hydropower water sources, or pristine high elevation lakes. As with AIS positive waters, high priority aquatic resources should be mapped prior to the fire season, and included in AIS prevention communications to fire managers.

UNDERSTAND AIS AND HOW FIRE ACTIVITIES CAN SPREAD THEM

Educating yourself and others regarding AIS and their dangers is likely one of the best management tools available. AIS encompass many species, from mollusks to plants to pathogens, and can be transported and decontaminated in a variety of ways. (See *Appendix D: Aquatic Invasive Species of Concern to Firefighters and Disinfection Methods* for descriptions and disinfection methods for AIS that may be of concern during water handling fire operations.) In addition, AIS educational materials are available on State and federal agency invasive species websites.

AIS are most likely to be transported via firefighting equipment that contacts or conveys untreated water, such as portable pumps (including floatable pumps), portable tanks, helicopter buckets, and internal tanks of fire engines, water tenders, helicopters, and fixed wing aircraft. Residual water left in incompletely drained tanks in equipment moved between fire incidents can harbor AIS, and quagga mussel larvae are able to survive for days in residual water contained within undrained boats. However, BMPs targeting drafting procedures greatly reduce AIS risk from residual tank water.

KNOW THE BMPS AND DECONTAMINATION PROTOCOLS

Study the General Prevention best management practices, which are simple operational techniques to prevent contact with AIS at the outset. For example, prudent prevention practices would be avoiding transferring water between drainages, or not sucking organic and bottom material into water intakes when drafting. Also, educate yourself on methods of decontamination, and emphasize flushing with pressurized hot water, drying of equipment, and use of spare gear over using chemical disinfectants. Note that for hot water decontamination, the recommended temperature is 140° F with a contact time of 2 minutes. According to research studies, this combination of temperature and contact duration will kill the majority of AIS of concern to fire operations (See *Appendix D*). For the hardier species, such as whirling disease, the flushing action of pressurized hot water greatly decreases the likelihood of retention on equipment.

Refer people who do not know how to decontaminate their equipment to someone who can either do the work or train them how. Be knowledgeable of contract language associated with equipment cleaning and decontamination requirements (e.g., scooper aircraft and helicopters). Read the "Operational Guidelines for Aquatic Invasive Species" section of the Interagency Standards for Fire and Fire Aviation Operations (the Red Book) at: <u>https://www.nifc.gov/policies/pol_ref_redbook.html</u>. Talk to helicopter managers and air operations to see if they need additional information or equipment.

INTERNAL ENGINE TANKS AND DRAFTING METHODS

Of great concern in the past was the possibility that residual engine or helicopter tank water contaminated with AIS could be transferred to uncontaminated waterbodies during the drafting process. However, if proper drafting and water handling BMPs are used and foot valves are working correctly (see *Appendix B*), there is low risk that contaminated tank water could "seep" into the drafting water source.

By focusing on drafting techniques rather than the difficult decontamination of internal tanks, which may or may not contain AIS, we can abolish the use of large volumes of chemical disinfectants and instead rely on procedure. Priming the engine pump with source water and not using tank water to initiate the prime eliminates the possibility of residual tank water entering a new waterbody through a leaky footvalve. Offer to provide information or assist engine operators on how to perform a foot valve test for leakage. Ask them if they are able to prime their pumps with source, or stream, water rather than from the engine tank. (See *Appendix B* for methods to field test foot valves for leakage.)

Helicopter snorkels do not need to be primed with either source or tank water, so there is no risk of residual tank water entering a water source during helicopter drafting operations.

Minimal risk occurs when contaminated tank water is applied to fire and upland areas so long as it does not enter other waterbodies. Water delivery equipment and accessories (e.g., fireline hoses, wye valves, nozzles) that do not transfer tank water to waterbodies do not need to be disinfected.

Familiarize yourself with situations where risk of AIS transfer is highest, such as gear that contacts untreated water and later is moved to new watersheds or waterbodies. Or a helicopter bucket that has snagged water plants and mud. Be able to discuss these scenarios so that others understand that the objective is to reduce the possibility of moving AIS from one source to another.

Serve as a problem solver, not an enforcer of rules and practices! Use your expertise as a READ to explain the BMPs and why they are important for ecosystem health.

PREPAREDNESS: DECONTAMINATION PERSONNEL, EQUIPMENT, AND SUPPLIES

There is typically a lag time between the onset of a fire incident and the arrival of decontamination equipment, such as heated pressure washers. Once equipment arrives, there may not be personnel available that are trained in its safe operation. The following measures are recommended to ensure your unit is properly prepared to prevent the spread of AIS during fire operations:

- Secure heated pressure washing equipment for use on your unit or the larger area in which you work. If you are unable to purchase equipment, have contact information at the ready for local contractors, rental shops, and chemical supply houses.
- For ground operations, ensure access to disinfectants for instances where heated pressure washing equipment is not available or there is insufficient time to thoroughly dry equipment. Know which disinfectants to provide to engine operators (see *Appendix A*).
- Train personnel in the safe implementation of decontamination protocols and operation of equipment. Develop Risk Assessments or Job Hazard Analyses for each specific decontamination task or piece of equipment. See *Appendix C* for Risk Assessment templates for disinfecting fire equipment: "Operating Hot Water Pressure Washers"; "Disinfecting Field Gear With Quaternary Ammonium Compounds"; and "Disinfecting Field Gear With Chlorine Bleach". Modify these to fit your particular situation and field unit.
- Secure all necessary Personal Protective Equipment (PPE) for pressure washing and use of chemicals, if appropriate.

Appendix A: Decontaminating with Chemical Disinfectants

Chemical disinfectants, though effective, can be hazardous, corrosive, and difficult to dispose of. However, when other decontamination methods, such as hot water or drying, are not options, chemicals can be used for small gear items ONLY (e.g., footvalves, draft hoses, or screens) in volumes appropriate for small buckets. Bleach and quaternary ammonium compounds do not meet corrosion requirements for aluminum and **shall not be used on aircraft fuselages or aerial water delivery components such as helicopter buckets and snorkels.**

Quaternary ammonium compounds (quats), common cleaning agents used in homes and hospitals, are safe for MOST gear and equipment when used at recommended concentrations and rinsed. Chlorine products are not emphasized for use in these guidelines because of their corrosiveness to fabrics, plastics, rubber, and metal and their limited effectiveness against snails. However, bleaches are extremely effective against certain invasive organisms (e.g., chytrid fungus, Port Orford cedar root disease) and are relatively inexpensive. (See *Appendix D: Aquatic Invasive Species of Concern to Firefighters and Disinfection Methods.*)

TO DECONTAMINATE GEAR WITH QUAT DISINFECTANTS:

The quaternary ammonium formulations *Super HDQ*® and *Green Solutions High Dilution256*® (which replaces the discontinued *Sparquat* 256®) were recently (see *Appendix D*, Stout et al. 2016) found to be most effective against a variety of AIS. *Green Solutions Neutral Disinfectant*® is a less concentrated version of *Green Solutions 256*®. These formulations can be used at concentrations according to their labels (see below). Soak gear in a bucket for 10 minutes. Alternatively, gear may be disinfected by spraying with quat from a backpack weed sprayer or spray bottle. Afterwards, **rinse gear thoroughly in clean water**. Quat compounds are highly toxic to aquatic organisms but are immobile in soil. Keep effluent, containing this product, at least 100 feet from lakes, ponds, streams or other waters. Do NOT allow product to enter storm drains, lakes, streams, or other waterbodies.

Volume of Tap Water	Super HDQ®	Green Solutions Neutral Disinfectant High Dilution 256®	Green Solutions Neutral Disinfectant® (this product is a lower concentration)	Soak Time	Spray Time
1 gallon water	¹ / ₂ oz	¹ / ₂ oz	2 oz	10 min	5 sec spray; let stand 10 minutes; rinse
1 gallon water	1 Tbsp.	1 Tbsp.	4 Tbsp.	10 min	5 sec spray; let stand 10 minutes; rinse

TO DECONTAMINATE GEAR WITH CHLORINE BLEACH:

Bleaches are corrosive to canvas, gaskets, and metal and have limited effectiveness against snails. However, bleaches are extremely effective against other invasive organisms, especially pathogens, and the bleach concentration below has been found to be effective for chytrid fungus and other AIS (*See Appendix D:* Johnson et al. 2003). Soak gear in a bucket for 10 minutes. Afterwards, **rinse gear thoroughly in clean water**.

Volume of Tap Water	" <i>Regular Clorox</i> ® <i>Bleach</i> " (6% sodium hypochlorite)	Soak Time
1 gallon water	9 oz	10 min
1 gallon water	1 ¹ / ₈ Cup	10 min

CHEMICAL DISPOSAL

Small quantities of diluted quaternary ammonium products or bleach which have been used to disinfect foot valves or other firefighting equipment may be disposed of in a sanitary sewer **as allowed by the product label**. Alternatively, used solutions of quaternary ammonium products or bleach may be disposed of by any application specified on product label direction, such as:

- Cleaning vehicle exteriors and tires by spray application of diluted materials
- For the prevention of mildew on non-porous surfaces
- Disinfection of toilets (including portable)

Always consult the product label in determining the appropriate PPE necessary for the mixing and use of these chemicals, and for final direction on a given products use and disposal. Do NOT allow these products to enter storm drains, lakes, streams, or other waterbodies.

SUPPLY SOURCES

These recommended chemicals are available through the U.S. Government Services Administration (GSA) <u>https://www.gsaadvantage.gov</u> or through local janitorial chemical suppliers.

1) Green Solutions Neutral Disinfectant®

GSA (NSN# 3502-04) = \$32 per case (4 gal) = \$8 per gal = \$.06 per oz = \$0.12 per gallon of mixed solution (Spartan Chemical Company; EPA registration #1839-169-5741)

2) <u>Green Solutions High Dilution 256®</u> (replaced Sparquat 256®)

This formulation is **4X more concentrated** than *Green Solutions Neutral Disinfectant*® (see above)

Not carried by GSA, but can be purchased from local janitorial supply businesses. Distributor locations can be found at: <u>http://www.spartanchemical.com/where-to-buy</u>

- Cost = ~\$140 per case (4 gal) = \$35 per gal = \$0.27 per oz = \$0.13 per 1 gallon of mixed solution (Spartan Chemical Company; EPA registration #1839-169-5741)
- 3) <u>Super HDQ®</u> (twice as concentrated as Sanicare Quat 128®)

GSA (NSN# 1204-04) = 1204-04

(Spartan Chemical Company; EPA registration # 10324-141-5741)

4) <u>Liquid household bleach</u> (6% sodium hypochlorite) (e.g., Regular Clorox® Bleach) Grocery stores, prices vary

Appendix B: Field Testing Foot Valves for Leaks

BACKGROUND INFORMATION

AIS can be found in the untreated water sources used in firefighting operations, either a natural source (a river or lake) or a human-made water body (a reservoir, canal, or stock tank). Untreated water sources may harbor a variety of AIS, including quagga and zebra mussels, New Zealand mudsnails, whirling disease, didymo (*rock snot*), and many others.

Of great concern for ground equipment is the possibility that residual tank water contaminated with AIS could be transferred to uncontaminated waterbodies during the drafting process.

Therefore, the following best management practices are recommended.

- Use a properly functioning and tested foot valve during drafting. Ensure the foot valve is screwed on snugly and not leaking.
- To minimize the potential for engine and water tender tank water leakage through the foot valve, *prime with water from the drafting source rather than water from the engine tank.* When priming using a bucket, first make sure that the bucket is clean prior to priming so the bucket does not transfer AIS. Additionally, during drafting and water tending operations don't leave draft hose full with foot valve engaged and submerged in water source when not pumping.
- Care should be taken when drafting to minimize any potential of tank water to come in contact with drafting source; e.g., pump priming or overflow of engine tank when filling.
- Untreated tank water obtained in one location should never be directly discharged into a waterbody at a different location.

In order to be prepared, foot valves on engines and water tenders should be tested monthly during the fire season and whenever an apparatus is moved between waterbodies. The following protocol outlines a simple test method that can be implemented in the field. Because foot valves can leak at either low or high pressures, **testing at both pressure levels is required** to evaluate the potential for leakage during operational drafting conditions.

EQUIPMENT LIST

Some items may be part of an engine's supplied equipment. Other items may need to be purchased but are easily found at fire equipment vendors.

Items needed to perform the leak test include:

- Suction hose and ratchet straps
- Assorted male-to-female adapters, increasers, and reducers

If a pressure gauge is not present on equipment:

- 1 ¹/₂" Pump Test Kit with Gauge CFE (Cascade Fire Equipment) P/N: 11495 or similar
- 1 ¹/₂" 90 Degree Elbow CFE (Cascade Fire Equipment) P/N: 10251-90 or similar

LOW PRESSURE TEST (3-5 PSI)

To perform the low pressure test fasten a length of suction hose to the engine or water tender (Figure 8). Use ratchet straps or another suitable method, as long as the suction hose is attached safely and securely to the ladder.

To adjust for size of the foot valve (e.g., $1\frac{1}{2}$ ", 3", or other), use a combination of male-to-female adapters, increasers, and/or reducers to attach the foot valve to the suction hose (Figure 9). Fill the suction hose with 6 to 10 feet of water to obtain 3-5 psi (2' of hose = 1 psi). The weight of the water provides the pressure on the foot valve. Check the foot valve for 3 to 5 minutes. There should be no leakage. If leakage occurs, replace the foot valve with one that does not leak.

Figure 9. Foot valve attached to suction line with various adapters as needed to adjust for foot valve size.

Figure 8. Suction hose with foot valve attached to engine ladder.

HIGH PRESSURE TEST (130 PSI)

To perform the high pressure test, first attach a wye or other suitable shut-off valve to the rear discharge (Figure 10). If a pressure gauge is not available on the equipment, attach a pressure gauge to the wye, then attach the 90 degree elbow and next attach the foot valve. The test set-up should resemble the one shown in Figure 10. Using the engine's pump, increase the pressure to 130 psi. Check the foot valve for 3 to 5 minutes. There should be no leakage. If leakage occurs, replace the foot valve with one that does not leak.

Thanks to Carl Schaefer at U.S. Forest Service, San Dimas Technology and Development Center, for development of this test protocol.

Figure 10. Pressure valve attached to the footvalve.

Appendix C: Job Safety Risk Assessment Templates for Disinfecting Field Gear

- **OPERATING HOT WATER PRESSURE WASHERS**
- DISINFECTING FIELD GEAR WITH QUATERNARY AMMONIUM COMPOUNDS
- **DISINFECTING FIELD GEAR WITH CHLORINE BLEACH**

07-09-2009 R4 RSC	Organizational and Operational Risk Assessment Worksheet Organizational Risk Management												Modified 215_A
1. Forest or Unit : TEMPLATE EXAMPLE		Locat	tion:		Prepared by (Name / Duty Position):							2. Pag	geof
3. Work Project/ Activity OPERATING HOT WATE	R PRESSURE	WASI	HER	RS	4. Initial Assessme	tial Assessment Date: 5. Date of this assessment update:							rsionof
 7. Worksheet Instructions: For each hazard ide activity and locatio Additional hazards 	n.				-				•		-	on con	trols and personnel assigned unique to the
8. Identified Hazards	Ha: Init rati	Assess zards: tial Ris ng fro c matri	sk m		l Proposed Contro s Developed for Id Risks:		the	Asse Haz sidua k:	ard		12. How to Implement the Controls: (To be completed on the local unit)		13. Assigned to: (To be completed on the local unit)
(Be Specific)	L	MH	E		(Be Specific)		L	M	H	E	(Be Specifi	c)	(Be Specific)
Unfamiliarity with Equip	ment	X		operating using. K and blee	the the risk of injury, r g instructions careful fnow how to stop the d pressure quickly. E ly familiar with the c	ly before machine Be	Х						
Physical Protection		X		to become speeds. wear e	ssure spray can caus me airborne and fly To avoid personal in ye, hand and foot s Keep operating area ns.	at high jury, afety	Х						
Risk of fire		X			dd fuel when the pro g or still hot.	duct is	Х						
Handling Hazardous Fu	iels		X	tanks. K Don't us solvents	onfuse gasoline and theep proper fuel in pr e oil containing gaso or alcohol. A mix up fire and/or explosion	oper tank. line, o can	X						

ard's Controls: dual Risk:	to Implement the : Be Specific)	19. Assigned to: (Be Specific)	
M H E (B	e Specific)	(Be Specific)	
HIGH (District Ranger)		XTREME	
h or	(District Ranger) Extremely High, Bri	HIGH EX (District Ranger) (District Range Extremely High, Brief Risk Decision Auth It the appropriate risk decision authority was not	

RISK ASSESSMENT MATRIX

As we have learned, successful management of risk demands commitment and leadership from top management to the smart employees in the field. We must continue to work towards agreement on how we define and manage tolerable risk and discourage attitudes of apathy or fatalism. Clearly we cannot completely eliminate the risk. Moreover, sardonic remarks that the only way to avoid the danger is to stay out of the woods do not add value to the discussion. On the other hand, we must not engage full on with heads down and surrender our fate to so called luck, or simply dismiss the concern as an inherent, unavoidable part of a risky job. We have the experience and capability to safely manage hazards and are obligated to seize every opportunity to do better.

A problem when you have a number of possible risks is to decide which ones are worthy of further attention. The Risk Assessment Matrix is a simple graphical tool widely used in many professions worldwide to help prioritize risks.

There are two main dimensions to risk: (a) How likely it will occur (probability), and (b) The impact/effect (severity) that it would have, should it occur. One familiar model of quantifying risk is to assign a numeric value to these risks and to multiply these together. However, a problem with this quantitative approach is that high-probability/low-impact risks get the same score as high-impact/low-probability risks. The following Risk Assessment Matrix is a widely recognized and more effective method to assess risk.

The Risk Assessment Matrix simply puts Probability (likelihood) and Severity (effect/impact) on two sides of an x-y chart and then the risk are placed within this two-dimensional space (see chart below). This gives several advantages:

- High-probability/low-impact and high-impact/low-probability risks are differentiated.
- You can visually compare risk, thus asking the question 'is this one more or less likely than that one?' This plays to the human cognitive preference for paired comparison rather than absolute evaluation.
- Then the risks can be addressed from top right down to bottom left. High-probability/low-impact and high-impact/low-probability risk of equal risk exposure score will tend to be evaluated at around the same time.
- The process can be done on the wall with flipchart-paper, on a paper or computer format, or in many cases in your head.

F	Risk Assessme	nt	HAZARD PROBABILITY (Likelihood)										
Matrix				Frequent	Likely	Possible	Seldom	Unlikely					
				А	В	С	D	Е					
	Catastrophic:		Ι										
	Fatal, life threater permanent disabil			Extreme	E		н	М					
	Major:		II										
Severity	Severe injury or il term disability an time			(4)		н	М						
(Effect/impact)	Moderate:		III										
	Medical treatmen permanent injury			High		М		L					
	and/or restricted			(3)			L						
	Minor: First ai	d -	IV										
	Minor cuts, bruise sickness. No lost	es, or		Medium	1	Low							
	time/restricted du	ty		(2)		(1)							
		Risk	x Tole	erance Ra	ating Criter	ia		-					
Extre	eme - 4	I	ligh -	3	Mediu	m - 2	Low	Low - 1					
Unacceptable:		Intolerab	le:		Tolerable:		Acceptable:						
be accepted. Mus	rriers of protection g controls. d risk to maintain	Should be r administrat engineering should not in special/I circumstan	ive and g contro be tolen imited	/or ols. Risk	Tolerable if furt reduction (cost, would be grossl disproportionate improvement ga	time, effort) y e to	Negligible given job procedures a Continual vigila to maintain assu remains at this l	are applied. Ince necessary Irance that risk					

07-09-2009 R4 RSC	Organizational Risk Management Organizational and Operational Risk Assessment Worksheet													Modified 215_A		
1. Forest or Unit : EXAMPLE TEMPLATE		Location: Prepared by (Name / Duty Position):												2. Pa	ageof	
3. Work Project/ Activity	4. Initial Assessment Date: 5. Date of this assessment update:											ssment update:	6. Versionof			
DISINFECTING FIELD GEAR WITH QUATERNARY AMMONIUM COMPOUNDS (e.g., HDQ, Green Solutions)																
 7. Worksheet Instructions: For each hazard identified in b Additional hazards unique to t 								•		tion o	contro	ols a	and personnel assigr	ned uniqu	e to the activity and location.	
8. Identified Hazards	H R	lassess lazaro lisk ra	ls: In ating	itial from		Proposed Control Measures entified Hazards/Risks:	s Developed		Asse Haza Resic Risk:	ırd's dual	e	12.	. How to Implement Controls: (To be completed on the loc		13. Assigned to: (To be completed on the local unit)	
(Be Specific)	L	Μ	Η	E		(Be Specific)		L					(Be Specific)	(Be Specific)	
Chemical Contact			X		can cause Wear prot	ted quat compounds are con irreversible eye damage and ective clothing including sa and impervious gloves.	d skin burns.	Х								
Swallowed Chemical		Х				ll is swallowed, drink a glas physician. Do not induce v		Х								
Eye Contact			X		Flush eyes least 15 m doctor. W each crew at a minin	. Remove contact lenses if s with copious amounts of v inutes. If irritation persists 'hen preparing quat solution member should carry 1 qua num for use as an eye flush.	vater for at , see a ns in the field art of water	х								
Storage and Transport	X				dry area, a spill, flood Do not rea product to	h air tight container upright ind avoid heat above 110° F d areas with large quantities use empty container. Do No enter storm drains, lakes, s es of water.	. In case of of water. OT allow	Х								

					CO	ONTINUED							
4. Identified Hazards	Н	ssess t azards isk fro	: Initi		16. Control Measures Developed for (Specific measures taken to redu a hazard/risks)	17. Assess the Hazard's Residual Risk:						19. Assigned to:	
(Be Specific)	L	Μ	Η	E	(Be Specific	c)	L	Μ	Η	Ε	(Be	(Be Specific)	
Inhalation of Fumes	Х				Avoid inhalation of vapor or mi ventilation is adequate.	st; normal room	X						
Physical or Chemical Hazards				Х	Do not mix with chlorine bleach may release hazardous or explo	X							
Environmental Hazards			X		organisms but are immobile in s containing this product at least ponds, streams or other waters (Reregistration Eligibility Decisi Alkyl Quaternaries EPA739-R-06-008 at: https://archive.epa.gov/pesticide eb/pdf/ddac_red.pdf. Flush to s	EPA739-R-06-008 at: https://archive.epa.gov/pesticides/reregistration/w eb/pdf/ddac_red.pdf. Flush to sanitary sewers if possible, but notify treatment facility if large							
	D. Remaining Risk Level After Control Measures Are Implemented: (CIRCLE HIGHEST REMAINING RISK LEVEL)					LOW MEDIU (Supervisor) (Program Mar Staff Office			HIGH (District Ranger)			EXTREME (District Ranger or Forest Supervisor)	
21. RISK DECISION AUTHORITY and Control Measures used to reduc measures taken and appropriate resource	e risks)	(Note	e: if tł	ne pers	son preparing the form signs this block	al Risk Level is Mec	dium,	-					-
(S	ignature)											

RISK ASSESSMENT MATRIX

As we have learned, successful management of risk demands commitment and leadership from top management to the smart employees in the field. We must continue to work towards agreement on how we define and manage tolerable risk and discourage attitudes of apathy or fatalism. Clearly we cannot completely eliminate the risk. Moreover, sardonic remarks that the only way to avoid the danger is to stay out of the woods do not add value to the discussion. On the other hand, we must not engage full on with heads down and surrender our fate to so called luck, or simply dismiss the concern as an inherent, unavoidable part of a risky job. We have the experience and capability to safely manage hazards and are obligated to seize every opportunity to do better.

A problem when you have a number of possible risks is to decide which ones are worthy of further attention. The Risk Assessment Matrix is a simple graphical tool widely used in many professions worldwide to help prioritize risks.

There are two main dimensions to risk: (a) How likely it will occur (probability), and (b) The impact/effect (severity) that it would have, should it occur. One familiar model of quantifying risk is to assign a numeric value to these risks and to multiply these together. However, a problem with this quantitative approach is that high-probability/low-impact risks get the same score as high-impact/low-probability risks. The following Risk Assessment Matrix is a widely recognized and more effective method to assess risk.

The Risk Assessment Matrix simply puts Probability (likelihood) and Severity (effect/impact) on two sides of an x-y chart and then the risk are placed within this two-dimensional space (see chart below). This gives several advantages:

- High-probability/low-impact and high-impact/low-probability risks are differentiated.
- You can visually compare risk, thus asking the question 'is this one more or less likely than that one?' This plays to the human cognitive preference for paired comparison rather than absolute evaluation.
- Then the risks can be addressed from top right down to bottom left. High-probability/low-impact and high-impact/low-probability risk of equal risk exposure score will tend to be evaluated at around the same time.
- The process can be done on the wall with flipchart-paper, on a paper or computer format, or in many cases in your head.

Ris	sk Assessme	ent		HAZARD PROBABILITY (Likelihood)										
Matrix				Frequent	t	Likely	Possible		Seldom	Unlikely				
				А		В	С		D	Е				
	Catastrophic:		Ι											
	Fatal, life threater permanent disabil			Extreme		E		Н		М				
	Major:		II	(4)			-							
Severity	Severe injury or il term disability and time			(4)		I	I		Μ					
(Effect/impact)	Moderate:		III											
	Medical treatment permanent injury			High		Ν	1			L				
	and/or restricted o			(3)					L					
	Minor: First ai	d -	IV											
	Minor cuts, bruise sickness. No lost	es, or		Medium		Lo)W							
	time/restricted du	ty		(2)		(1	l)							
		Risk	Tole	erance R	ating	g Criteria	ı							
Extren	ne - 4	H	ligh -	3		Medium	- 2		Low	- 1				
Unacceptable:		Intolerable:			Toler	able:		Acceptable:						
Likely harm from an e accepted. Must be rec administrative barriers and/or engineering co or avoid risk to mainta safeguards.	duced with s of protection ontrols. Eliminate	Should be re administrativ engineering should not be special/limite	ve and/o controls e tolerat	r . Risk ed save in	reduc would	able if further tion (cost, time d be grossly oportionate to d.	e, effort)	job pr Conti maint	rocedures are	e necessary to e that risk				

07-09-2009 R4 RSC	Organizational Risk Management 07-09-2009 R4 RSC Organizational and Operational Risk Assessment Worksheet													
1. Forest or Unit : EXAMPLE TEMPLATE		Lo	ocatio	on:	Prepared by	(Nam	ne / L	Duty F	Positi	on):	2. Page	of		
3. Work Project/ Activity DISINFECTING FIELD GEA BLEACH	6. Versi	ionof												
and location.		í			district/unit is to complete boxes 12 and 13 with unit may need to be documented in box 8 by the	1		1			personne	I assigned unique to the activity		
8. Identified Hazards	Haza	g fron	the Initial n risk		10. Initial Proposed Control Measures Developed for Identified Hazards/Risks:		rd's	s the Residu	ıal	12. How to Implement the Controls: (To be complete local unit)		13. Assigned to: (To be completed on the local unit)		
(Be Specific)	L	Μ	Н	Е	(Be Specific)	(Be Specific))	(Be Specific)						
Chemical Contact			X		Bleach can cause severe but temporary eye irritation and can be a skin irritant. Wear protective clothing including safety glasses or goggles and impervious gloves.	X								
Swallowed Chemical		Х			If chemical is swallowed, drink a glassful of water and call a physician. Do not induce vomiting.	Х								
Eye Contact			X		Wear PPE. Remove contact lenses if present. Flush eyes with copious amounts of water for at least 15 minutes. If irritation persists, see a doctor. When preparing bleach solutions in the field each crew member should carry 1 quart of water at a minimum for use as an eye flush.	X								
Storage and Transport	X				Store in an air tight container upright in a cool, dry area, and away from direct sunlight and heat to avoid deterioration. In case of spill, flood areas with large quantities of water. Do not reuse empty container. Do NOT allow product to enter storm drains, lakes, streams, or other bodies of water.	Х								

14. Identified Hazards	Hazards: Initial Ha		Hazards.	16. Control Measures Developed for Identified Hazards: (Specific measures taken to reduce the probability of a hazard/risks)			17. Assess the Hazard's Residual Risk:			18. How to In Controls:	Implement the	19. Assigned to:		
(Be Specific)	L	Μ	Н	E		(Be Specific)		L	Μ	Η	Е	(Be	Specific)	(Be Specific)
Inhalation of Fumes	X					Avoid inhalation of vapor or mist and use only in a well-ventilated area.								
Physical or Chemical Hazards			X		Prolon, pitting fabrics Do not contair with qu Mixing ammor	Product contains a strong oxidizer. Prolonged contact with metal may cause pitting or discoloration. Will damage fabrics and rubber. Do not add bleach directly to fire retardants containing ammonia, such as Phos-Chek, or with quaternary ammonium products. Mixing bleach with products containing ammonia may release hazardous or explosive gases.								
Environmental Hazards		Х			degrad contair	ach is toxic to aquatic organisms but rades rapidly. Do not discharge effluent taining this product into lakes, ponds, ams or other waters.								
20. Remaining Risk Level After Control Measures Are Implemented: (CIRCLE HIGHEST REMAINING RISK LEVEL)				LOW (Supervisor)	MEDIUM (Program Manage Officer)	nager Staff		HIG (District I			(Distric	EXTREME t Ranger or Forest Supervisor)		

(Signature)

RISK ASSESSMENT MATRIX

As we have learned, successful management of risk demands commitment and leadership from top management to the smart employees in the field. We must continue to work towards agreement on how we define and manage tolerable risk and discourage attitudes of apathy or fatalism. Clearly we cannot completely eliminate the risk. Moreover, sardonic remarks that the only way to avoid the danger is to stay out of the woods do not add value to the discussion. On the other hand, we must not engage full on with heads down and surrender our fate to so called luck, or simply dismiss the concern as an inherent, unavoidable part of a risky job. We have the experience and capability to safely manage hazards and are obligated to seize every opportunity to do better.

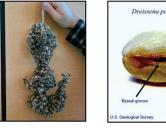
A problem when you have a number of possible risks is to decide which ones are worthy of further attention. The Risk Assessment Matrix is a simple graphical tool widely used in many professions worldwide to help prioritize risks.

There are two main dimensions to risk: (a) How likely it will occur (probability) and (b) The impact/effect (severity) that it would have, should it occur. One familiar model of quantifying risk is to assign a numeric value to these risks and to multiply these together. However, a problem with this quantitative approach is that high-probability/low-impact risks get the same score as high-impact/low-probability risks. The following Risk Assessment Matrix is a widely recognized and more effective method to assess risk.

The Risk Assessment Matrix simply puts Probability (likelihood) and Severity (effect/impact) on two sides of an x-y chart and then the risk are placed within this two-dimensional space (see chart below). This gives several advantages:

- High-probability/low-impact and high-impact/low-probability risks are differentiated.
- You can visually compare risk, thus asking the question 'is this one more or less likely than that one?' This plays to the human cognitive preference for paired comparison rather than absolute evaluation.
- Then the risks can be addressed from top right down to bottom left. High-probability/low-impact and high-impact/low-probability risk of equal risk exposure score will tend to be evaluated at around the same time.
- The process can be done on the wall with flipchart-paper, on a paper or computer format, or in many cases in your head.

Risk Assessment				HAZARD PROBABILITY (Likelihood)						
Matrix				Frequent	Likely	Possible	Seldom	Unlikely		
				А	В	С	D	Е		
	Catastrophic:	Catastrophic: I								
	Fatal, life threater permanent disabi			Extreme	E		н			
	Major:	Major: II								
Severity	Severe injury or il term disability an time		(4)		н					
(Effect/impact)	Moderate:	Medical treatment-no permanent injury or illness, and/or restricted duty Minor: First aid - Minor cuts, bruises, or						1		
						М		L		
							L			
	Minor: First ai									
	Minor cuts, bruise sickness. No lost				1	Low				
	time/restricted do			(2)		(1)				
		Risk	x Tole	erance Ra	ating Criter	ia				
Extre	I	High -	3	Mediu		Low - 1				
Unacceptable:	Unacceptable:				Tolerable:		Acceptable:			
Likely harm from a be accepted. Must administrative barr and/or engineering Eliminate or avoid sufficient safeguard	Should be r administrat engineering should not in special/l circumstan	tive and g contro be toler imited	/or ols. Risk	Tolerable if further risk reduction (cost, time, effort) would be grossly disproportionate to improvement gained.		Negligible given common safe job procedures are applied. Continual vigilance necessary to maintain assurance that risk remains at this level.				


Appendix D:AQUATIC INVASIVE SPECIES of Concern to Firefighters and
Disinfection Methods

The species fire operations are most likely to encounter, their distributions, all disinfection methods, and references.

Zebra & Quagga Mussels

Zebra & Quagga Mussels

Dreissena polymorpha & Dreissena rostriformis bugensis

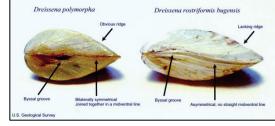


Photo credit: The Nature Conservancy

Photo credit: U.S. Geological Survey

GENERAL INFORMATION:

- Quagga Mussel Distribution: CA, NV, UT, AZ, CO, NM, OK, TX, midwest, Great Lakes region and NE US. For most up-to-date information on distribution, please see: <u>https://nas.er.usgs.gov/taxgroup/mollusks/zebramussel/</u>
- Zebra Mussel Distribution: CA, UT, CO, OK, KS, NE, SD, ND, LA, AR, MO, IA, MN, MS, TN, AL, KY, IN, other midwest and Great Lakes regions and NE US. For most up-to-date information on distribution, please see: https://nas.er.usgs.gov/taxgroup/mollusks/zebramussel/
- Habitat: Both mussels attach to hard surfaces in temperate lakes and slow rivers. Microscopic mussel larvae are released into open water where they swim about for several days before settling.
- Fire Activities Posing Risk: Most concern is with microscopic larvae present in water column. Larvae can survive for 5 days in internal tanks with residual water (summer months). Risks include: contact with untreated water; helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water.
- Environmental Impacts: Zebra and quagga mussels colonize water supply pipes and biofoul hydroelectric and nuclear power plants, public water plants, and industrial facilities. These species remove nutrients in aquatic ecosystems and litter beaches with sharp-edged shells.

Methods of Control for Firefighters	Details of Method	References	Notes
Temperature	HOT WATER SPRAY	Comeau et al. 2011	
	To kill Quagga or Zebra mussel adults	(quagga adults); Morse	
	≥ 140°F (60°C) for 5 to 10 seconds	2009 (zebra adults)	
	<u>To kill Quagga/Zebra mussel free-swimming larvae</u> ≥ 140°F (60°C) likely to be 'instantly lethal'	R. McMahon, pers. comm. (2014)	

DISINFECTION PROTOCOLS:

Methods of Control for Firefighters	Details of Method	References	Notes
	HOT WATER IMMERSION: <u>To kill Quagga/Zebra mussel adults and free-swimming larvae</u> ≥ 120°F (50°C) for 1 minute	Beyer et al. 2011	
	FREEZING ≤ 32°F (0°C) for 48 hours or more for adults	McMahon 1996	
Drying	In summer, 5 days survival time for larvae in internal tanks with residual water; in cooler months; 28 days	Choi et al. 2013	
Mechanical	Scraping, brushing, hot water pressure washing to flush larvae	Comeau et al. 2011 and multiple sources	
CHEMICALS			
Quaternary ammonium Compounds (e.g., alkyl dimethyl benzylammonium chloride [ADBAC]; diecyl dimethyl ammonium	<u>To kill Quagga mussel larvae</u> : <i>3.1% Sparquat256[®]</i> solution Mixing instructions: 4.3 oz per 1 gallon water 3.4 gallons per 100 gallons water	Britton and Dingman 2011	Quat compounds methods are specifically for larvae likely found in the
chloride [DDAC])	Contact time = 10 minutes OR <i>1.8% Green Solutions High Dilution 256[®] solution</i> Mixing instructions: 2.5 oz per 1 gallon water 1.9 gallons per 100 gallons water Contact time = 10 minutes	Britton and Dingman 2011	water column. Quat Compounds can corrode aluminum; not for use on aircraft equipment.
Bleach (e.g., Clorox [®]) 6% sodium hypochlorite	0.5% bleach solution (250 ppm sodium hypochlorite)Mixing instruction:0.6 oz bleach per 1 gallon water	Modovski 2011 (Based on Cope et al. 2003 which cited Gatenby 2000	Bleach is corrosive to gear and metals.

Methods of Control for Firefighters	Details of Method	References	Notes
	 1.1 Tablespoons of bleach per gallon water ½ gallon bleach per 100 gallons water Contact time = rinse only, no time specified. 		
Other Disinfectants	To kill Quagga mussel adults & larvae:	Stockton 2011	Virkon is corrosive to
	2% Virkon Aquatic [®] solution		soft metals.
	Mixing instructions:		Although not
	20 g/liter		specifically
	76g per 1 gallon of water		tested, may not
	760g per 100 gallons water		be applicable
	Contact time = 10 minutes		for use on aircraft
	To kill Quagga mussel larvae only:		equipment.
	0.5% Virkon Aquatic [®] solution		
	Mixing instructions:		
	5 g/liter		
	19g per 1 gallon of water		
	190g per 100 gallons water		
	Contact time = 10 minutes		

Asian Clam

Asian Clam

Corbicula fluminea

Photo credit: Noel M. Burkhead-USGS

Photo credit: Flyforums.co

General Information:

- **Distribution:** Almost all US states except MT, ND and ME. For most up-to-date information on distribution, please see: https://nas.er.usgs.gov//queries/FactSheet.aspx?speciesID=92.
- Habitat: Lakes and streams, buried in sediments or larvae and juveniles drifting in currents. •
- Fire Activities Posing Risk: Most concern is with larvae and juvenile clams in swept into water column. Risks include: contact with • untreated water; helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water.
- Environmental Impacts: Asian clams can biofoul power plant and industrial water systems. Juveniles secrete a mucousy dragline and • can be easily transported in currents. The clams also clog irrigation canals and drinking water pipes.

Methods of Control for Firefighters	Details of Method	References	Notes
Temperature	To kill Asian clam larvae and small juveniles:HOT WATERIt is probable that a hot water spray ≥ 140°F (60°C) for a fewseconds would be lethal. No scientific study reportseffectiveness.Flushing equipment with hot water would remove larvae andjuveniles, which are easily entrained in flowing water.To kill Asian clam adults:≥ 109° F (43°C) for 30 minutes	R. McMahon, pers. comm. (2014) McMahon and Williams 1986 Mattice and Dye 1975	

Methods of Control for	Details of Method	References	Notes
Firefighters			
Drying	Dry gear in air for 14–27 days in cool weather; much shorter dry times in full sun	McMahon and Williams 1984	
Mechanical	Scraping, brushing, remove all plant material	Multiple sources	
CHEMICALS	Though chemicals are used in hydroelectric facilities, Asian clams are resistant to chemicals: decontamination times are lengthy and kill rates < 100%	For example, Barbour et al. 2013	

New Zealand Mudsnail

Potamopyrgus antipodarum

General Information:

- **Distribution:** WA, OR, CA, ID, MT, WY, UT, NV, AZ, CO, MN, IL, OH, PA, NY, and Canada. For most up-to-date information on distribution, please see: <u>https://nas.er.usgs.gov/taxgroup/mollusks/newzealandmudsnaildistribution.aspx</u>.
- Habitat: Streams and lakes, occurring on rocky substrates as well as aquatic plants.
- Fire Activities posing risk: Contact with untreated water; helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water.
- Environmental impacts: Mudsnails reproduce very quickly. It only takes a SINGLE snail can result in a colony of more than 40 million snails in just one year. New Zealand mudsnails can smother a streambed, crowding out the native aquatic species that provide food for fish.

Methods of Control for Firefighters	Details of Method	References	Notes
Temperature	HOT WATER: ≥ 122°F (50°C) for 15 seconds	Dwyer et al. 2003	
	FREEZING: ≤ 27°F (-3°C) for 1 to 2 hours	Richards et al. 2004	
Drying	Dry gear in full sunlight for ≥ 50 hours	Alonso and Castro-Diez 2012	
	Dry gear at 86°F (30°C) for 24hours Dry gear at ≥ 104°F (40°C) for at least 2 hours	Richards et al. 2004	

Methods of Control for Firefighters	Details of Method	References	Notes
Mechanical	Scraping, brushing, washing and removing organics (e.g. mud)	Multiple sources	
CHEMICALS			
Quaternary ammonium compounds (e.g., alkyl dimethyl benzylammonium chloride [ADBAC]; diecyl dimethyl ammonium chloride [DDAC])	<u>0.8% Green Solutions High Dilution 256° solution</u> Mixing instructions: - ½ liquid oz. per 1 gallon water - 1 Tbsp. per 1 gallon water Contact time = 10 minutes <u>0.33% Super HDQ</u> * Mixing instructions: - ½ liquid oz. per 1 gallon water - 1 Tbsp. per 1 gallon water Contact time = 10 minutes	Stout et al. 2016	Quat Compounds can corrode aluminum; not for use on aircraft equipment .
Bleach (e.g., Clorox [®]) 6% sodium hypochlorite	Not effective	Hosea and Finlayson 2005	

Methods of Control for Firefighters	Details of Method	References	Notes
Other Agents	2% Virkon Aquatic [®] solution	Stockton and Moffitt 2013	Virkon is
	Mixing instructions:		corrosive to
	77g per 1 gallon of water		soft metals.
	770 g per 100 gallons water		Although not
	Contact time = 15-20 minutes		specifically
			tested, may
			not be
			applicable for
			use on
			aircraft
			equipment.

Malaysian Trumpet Snail

Malaysian Trumpet Snail

Melanoides tuberculata Also called: Red Rimmed Melania, Red Lipped Melania

Photo credit: Alex Kawazaki

Photo credit: Flickriver.com

General Information:

- **Distribution:** AZ, CA, CO, FL, HI, LA, MT, NC, NV, OR, UT, TX (possible in SD, VA and WY). For most up-to-date information on distribution, please see: <u>https://nas.er.usgs.gov/queries/FactSheet.aspx?SpeciesID=1037</u>.
- Habitat: Slow moving rivers and lakes, on mud and plants
- Fire Activities Posing Risk: Risks include: helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water
- Environmental Impact: This trumpet snail can outcompete native snails and alter ecosystem functions

Methods of Control for Firefighters	Details of Method	References	Notes
Temperature	HOT WATER: <u>To kill snails of all sizes</u>	Mitchell and Brandt 2005	
	122 °F (50°C) for 4-5 minutes		
	FREEZING:	Mitchell and Brandt 2009	
	Freezing in Ice water for 12-24 hours		
	Freezing in salty ice water for 2 hours		
Drying	Very resistant to drying, >20 days	Mitchell and Brandt 2005	
Mechanical	Scraping, brushing, hot water pressure washing	Multiple sources	

Methods of Control for	Details of Method	References	Notes
Firefighters		References	Notes
CHEMICALS			
Quaternary ammonium	No known studies		
compounds			
Bleach (e.g., Clorox [®])	Not effective	Mitchell et al. 2007	
6% sodium hypochlorite			

Oriental Mystery Snail

Oriental Mystery Snail

Cipangopaludina spp. Also called: Chinese Mystery Snail

Photo credit: Cornell University

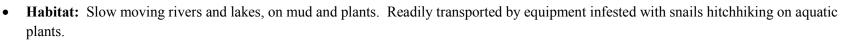
Photo credit: Oregon Dept of Fish and Wildlife

General Information:

- **Distribution:** WA, OR, CA, ID, UT, AZ, CO TX, NE, MO, GA, FL, NC, Great Lakes region, and northeastern US. For most up-to-date information on distribution, please see: <u>https://nas.er.usgs.gov/queries/FactSheet.aspx?SpeciesID=1044</u>.
- Habitat: Slow moving rivers and lakes, on mud and plants. Readily transported by equipment infested with snails hitchhiking on aquatic plants.
- Fire Activities Posing Risk: Helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water.
- Environmental Impact: These snails form dense populations and outcompete native species for food and habitat. They are intermediate hosts for parasitic worms and can transmit diseases that kill waterfowl. Some mystery snails prey on fish embryos. Snail shells often litter shorelines and clog screens of water intakes.

Method of Control for Firefighters	Details of Method	References	Notes
Temperature	HOT WATER: 122 °F (50°C) for 4-5 minutes	J. Havel, pers. comm. (2014)	
Drying	14 to ≥28 days, depending on snail size. Larger snails very resistant to drying	Havel 2011	
Mechanical	Scraping, brushing, clean off all plant material	Multiple sources	

Method of Control for Firefighters	Details of Method	References	Notes
CHEMICALS			
Quaternary ammonium	No known studies		
compounds			
Bleach (e.g., Clorox [®]) 6% sodium hypochlorite	No known studies, but as with other snails with sealing flaps (e.g., New Zealand mudsnails, trumpet snails), likely not effective		


Faucet Snail

Faucet Snail

Bithynia tentaculata

General Information:

 Distribution: Great Lakes Region, WI, PA, NY, VT, VA, MD, and MT. For most up-todate information on distribution, please see: <u>https://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=987</u>.

- Fire Activities Posing Risk: Helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water.
- Environmental Impact: These snails outcompete native species for food and habitat in lakes and streams. They are intermediate hosts for parasitic worms and transmit diseases that kill waterfowl. Where abundant they infest municipal water supplies.

Method of Control for Firefighters	Details of Method	References	Notes
Temperature	HOT WATER: 122 °F (50°C) for ≥1 minute	Mitchell and Cole 2008	
Drying	Dry gear for 14 to 21 days	Mitchell and Cole 2008	
Mechanical	Scraping, brushing, clean off all plant material	Multiple sources	
CHEMICALS			
Quaternary ammonium Compounds	No known studies		
Bleach (e.g., Clorox [®]) 6% sodium hypochlorite	Not effective	Mitchell and Cole 2008	
Other agents	Virkon [®] Not effective	Mitchell and Cole 2008	

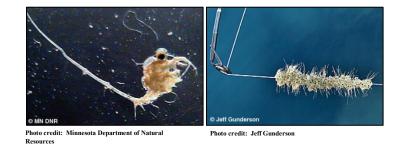

Disinfection Protocols:

Photo credit: Amy Benson-USGS

Spiny Waterflea

Bythotrephes longimanus

General Information:

- **Distribution:** Primarily in the Great Lakes Region of the US. For most up-to-date information on distribution, please see: https://nas.er.usgs.gov/queries/FactSheet.aspx?SpeciesID=162.
- Habitat: Waterflea plankton (adults and juveniles) are free-swimming in water column of ponds and lakes; dormant (resting) eggs are in mud or silt.
- Fire Activities posing risk: Contact with untreated water; helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water.
- Environmental Impact: The rapidly reproducing spiny waterflea competes with small fish and fouls fishing gear. Larger fish that feed on waterfleas may die due to punctures from spines.

Methods of Control for Firefighters	Details of Method	References	Notes
Temperature	HOT WATER To kill adults, juveniles, and resting eggs:	Branstrator et al. 2013 (resting eggs)	
	≥ 122°F (50°C) for 5 minutes 140°F (60°C) for 1 minute	Beyer et al. 2011 (plankton)	
Drying	Dry gear for ≥6 hours (planktonic adults and juveniles, and resting eggs)	Branstrator et al. 2013 (resting eggs) Branstrator, D.K., pers. comm. 2014; (plankton)	

Methods of Control for	Details of Method	References	Notes
Firefighters		References	Notes
Mechanical	Scraping, brushing, removal of organic and plant materials.	Multiple sources	
CHEMICALS			
Quaternary ammonium	No known studies		
compounds			
Bleach (e.g., Clorox [®])	Not effective	Branstrator et al. 2013	
6% sodium hypochlorite			

Didymo

Didymosphenia geminata

Photo credit: USGS

Photo credit: Biosecurity New Zealand

General Information:

- **Distribution:** WA, OR, CA, ID, MT, WY, CO SC, ND, AR, NC, VA WV PA, NY, NH, CT, AK, and Canada. For most up-to-date information on distribution, please see: <u>https://www.invasivespeciesinfo.gov/aquatics/didymo.shtml</u>.
- Habitat: Didymo is a single cell alga that attaches to submerged rocks in cold streams and rivers.
- Fire Activities posing risk: Contact with untreated water; helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water. Didymo can survive in residual tank water for <2 days in summer but up to 45 days in autumn (Kilroy et al. 2007).
- Environmental Risk: Didymo forms dense mats that trail downstream and can completely cover the substrate, smothering native plants, insects, and mollusks.

Methods of Control for Firefighters	Details of Method	References	Notes
Temperature	HOT WATER: 113°F (45°C) for 20 minutes 140°F (60°C) for 1 minute FREEZING: 28°F (-2°C) for 4 hours ; 5°F (-15°C) for 2hours	Kilroy et al. 2007 Kilroy et al. 2007	
Drying	Dry external surfaces and internal tanks for 48 hours in summer	Kilroy et al. 2007	
Mechanical	Scraping, brushing, removal of organic and plant materials		
CHEMICALS			
Quaternary ammonium compounds (e.g., alkyl dimethyl	 2.0 % Sanicare Quat128[®] solution Mixing instructions: 2.4 oz per 1 gallon water 	Matthews 2007, derived from Kilroy et al. 2007	

Methods of Control for		D. f	
Firefighters	Details of Method	References	Notes
benzylammonium	1.9 gallons per 100 gallons water		
chloride [ADBAC]; diecyl	Contact time = 1 minute		
dimethyl ammonium	OR		
chloride [DDAC])	1.2% Sparquat256 [®] solution		
	Mixing instructions:		
	1.7 oz per 1 gallon water		
	1.3 gallons per 100 gallons water		
	Contact time = 1 minute		
	OR		
	0.7% Green Solutions High Dilution 256 [®] solution		
	Mixing instructions:		
	1.0 oz per 1 gallon water		
	0.8 gallons per 100 gallons water		
	Contact time = 1 minute		
Bleach (e.g., Clorox [®])	2.0% bleach solution (800 ppm sodium hypochlorite)	Root and O'Reilly 2012	≥90%
6% sodium hypochlorite	Mixing instructions:		effective in
	1.8 oz bleach per 1 gallon water		killing didymo;
	3.6 Tablespoons bleach per gallon water		corrosive to
	1.4 gallon bleach per 100 gallons water		fabric and
	Contact time = 1 minute		metals
Other Disinfectants	1% Virkon Aquatic®	Root and O'Reilly 2012	~80%
	10 g/liter		effective
	Contact time = 10 minutes		
			≥95%
	Greenworks dish detergent:		effective
	5% solution for 1 minute		enective
	Devue dieb determente		≥95%
	Dawn dish detergent:		
	5% solution for 1 minute		effective

Chytrid fungus

Batrachochytrium dendrobatidis

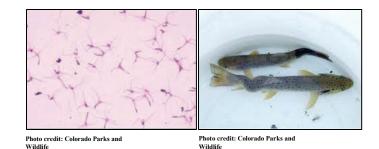
General Information:

- Distribution: Chytrid fungus occurs on most continents.
- Habitat: Zoospores are free-swimming in water column and can survive in wet mud or silt.
- Fire Activities posing risk: Contact with untreated water; helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water.
- Environmental Effects: This aquatic fungus feeds on living vertebrates and primarily affects the skin of amphibians. Because amphibians breathe and take up water through their skin, the disease causes widespread amphibian declines.

Methods of Control for Firefighters	Details of Method	References	Notes
Temperature	HEAT 140°F (60°C) for 5 minutes (tested in incubators)	Johnson et al. 2003	
Drying	Dry gear for ≥3 hours; in sunlight is best.	Johnson et al. 2003	
Mechanical	Scraping, brushing, removal of organic and plant materials.		
CHEMICALS			
Quaternary ammonium compounds (e.g., alkyl dimethyl benzylammonium chloride [ADBAC]; diecyl dimethyl ammonium	 0.15% Sanicare Quat128[®] solution Mixing instructions: 0.02 oz per 1 gallon water ½ teaspoon per 1 gallon water Contact time = 30 seconds OR 0.04% Sparquat256[®] solution 	Johnson et al. 2003	

Photo credit: Microbiologybytes

Photo credit: DPIW.tas.gov.au


Methods of Control for Firefighters	Details of Method	References	Notes
chloride [DDAC])	Mixing instructions:		
	0.06 oz per 1 gallon water		
	0.36 teaspoon per gallon of water		
	Contact time = 30 seconds		
	OR		
	0.02% Green Solutions High Dilution 256 [®] solution		
	Mixing instructions:		
	- 0.03 oz per 1 gallon water		
	- 0.2 teaspoon per 1 gallon water		
	Contact Time = 30 seconds		
"Regular Clorox [®] Bleach"	22% bleach solution (1.2% sodium hypochlorite)	Ultra Clorox [®] Label (EPA	These mixing
6% sodium hypochlorite	Mixing instructions:	Reg #5813-50)	instructions
	1 part bleach:4 parts water		are approved
	26 oz bleach per 1 gallon water		by EPA
	20 gallons bleach per 100 gallons water		specifically for
	Contact time = 5 minutes		chytrid
	OR		fungus.
	7% bleach solution (0.4% sodium hypochlorite)		
	Mixing instructions:		
	9 oz bleach per 1 gallon water		Johnson et al.
	7 gallons bleach per 100 gallons water		2003
	Contact time = 10 minutes		
"Clorox [®] Germicidal	22% bleach solution (1.2% sodium hypochlorite)	Germicidal Healthcare	These mixing
Bleach"	Mixing instructions:	Clorox [®] label (EPA Reg. No.	instructions
8.25% sodium	1 part bleach:5.5 parts water	5813-100)	are approved by EPA
hypochlorite	20 oz bleach per 1 gallon water		specifically for
	15.4 gallons bleach per 100 gallons water		chytrid
	Contact time = 5 minutes		fungus.

Methods of Control for Firefighters	Details of Method	References	Notes
Other Disinfectants	0.1% Virkon®	Johnson et al. 2003	
	1 g/liter		
	Contact time = \geq 2 seconds		

Whirling Disease

Myxobolus cerebralis

General Information:

- **Distribution:** WA, OR, CA, ID, NV,AZ, NM, UT, CO, NE, WY, ID, MT, MI, WI, OH, WV, VA, DE, MD, PA, NJ, CT, NY, MA, VT, NH, AK. For most up-to-date information on distribution, please see: <u>https://www.invasivespeciesinfo.gov/microbes/whirling.shtml</u>.
- Habitat: Free-swimming microscopic larvae occur in water column, resistant spores in mud and bottom sediments. Spores can remain viable in mud for 12 years.
- Fire Activities Posing Risk: Risks include: contact with untreated water; helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water.
- Environmental Effects: Whirling disease afflicts trout species, causing spinal distortions and population declines.

Methods of Control for Firefighters	Details of Method	References	Notes
Temperature	HOT WATER:	Hoffman and Markiw	
	To kill spores	1977	
	195°F (90°C) 10 minutes		
	To kill free-swimming larvae	Wagner et al. 2003	
	≥ 167°F (75°C) for 5 minutes		
Drying	Dry gear for 24hours, drying in sunlight is best to kill spores	Hedrick et al. 2008	
	and larvae		
Mechanical	Scraping, brushing, washing and removing organics (e.g.,	Multiple sources	
	mud)		

Methods of Control for Firefighters	Details of Method	References	Notes
CHEMICALS			
Quaternary ammonium	<i>4.6% Sanicare Quat128</i> ° solution	Hedrick et al. 2008	
Quaternary ammonium compounds (e.g., alkyl dimethyl benzylammonium chloride [ADBAC]; diecyl dimethyl ammonium chloride [DDAC])	 4.6% Sanicare Qualizer Solution Mixing instructions: 6.4 oz per 1 gallon water 5 gallons per 100 gallons water Contact time = 10 minutes. OR 3.1% Sparquat256° solution Mixing instructions: 4.3 oz per 1 gallon water 3.4 gallons per 100 gallons water Contact time = 10 minutes OR 1.8% Green Solutions High Dilution 256° solution Mixing instructions: 2.5 oz per 1 gallon water 1.9 gallons per 100 gallons water 		
Bleach (e.g., Clorox [®]) 6% sodium hypochlorite	1% bleach solution (500 ppm sodium hypochlorite) Mixing instruction:	Hedrick et al. 2008 (spores)	
	 1.1 oz bleach per 1 gallon water 2.2 Tablespoons bleach per gallon water 0.9 gallon bleach per 100 gallons water Contact time = 15 minutes 	(apores) Wagner et al. 2003 (larvae)	

Viral Hemorrhagic Septicemia

Novirhabdovirus sp.

- **Distribution:** Great Lakes and St. Lawence River. For most up-to-date information on distribution, please see: https://www.invasivespeciesinfo.gov/microbes/vhs.shtml.
- Habitat: Viral Hemorrhagic Septicemia (VHS) is carried in the water column and in aquatic invertebrates, such as snails and crustaceans, as well as fish parts.
- Fire Activities Posing Risk: Most concern is with virus free floating in the water column. Risks include: contact with untreated water; helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water.
- Environmental Effects: Over 50 fish species are susceptible to this disease which causes significant fish die offs.

Method of Control for Firefighters	Details of Method	References	Notes
Temperature	HOT WATER: 122°F (50°C) for 10 minutes 158°F (70°C) for 1 minute	Jørgensen 1974, cited in Bovo et al. 2005	
Drying	Dry gear for 4 days at 70°F (21°C)	Pietsch et al. 1977 (for IHNH virus). (Bovo et al. 2005)	IHNV and VHSV are closely related viruses. It is presumed that inactivation studies on one virus may pertain to the other.

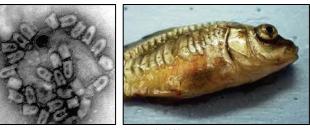

Photo credit: Seagrant.suny.edu

Photo credit: D. Kenyon Michigan DNR

Method of Control for Firefighters	Details of Method	References	Notes
Mechanical	Thoroughly wash and dry	Multiple sources	
CHEMICALS			
Quaternary ammonium compounds (e.g., alkyl dimethyl benzylammonium chloride [ADBAC]; diecyl dimethyl ammonium chloride [DDAC])	 0.4% Green Solutions High Dilution 256[®] solution Mixing instructions: ½ oz per 1 gallon water 0.4 gallon per 100 gallons water Contact time = 10 minutes 	EPA label Reg. No. 1839-167 (2010)	These mixing instructions are approved by EPA for closely related viruses in the same family, but not specifically for VHS.
Bleach (e.g., Clorox [®]) 6% sodium hypochlorite	 0.2% bleach solution (98 ppm sodium hypochlorite) Mixing instructions: 0.26 oz/1 gallon water ~½ tablespoon/1 gallon water 26 oz/100 gallons water 0.2 gal/100 gallons water Contact time: 2 minutes 	Ahne 1982, cited in Bovo et al. 2005	
Other Agents	0.5% - 1% Virkon Aquatic [®] 5 g/liter to 10 g/liter Contact time = 10 minutes	Yanong and Erlacher-Reid 2012	

Spring Viremia of Carp

Rhabdovirus carpio

hoto	credit:	ytponet	

Photo credit: USGS

General Information:

- **Distribution:** NC, Il, WI OH,MN, MO, WA, Ontario. For most up-to-date information on distribution, please see: <u>https://www.glerl.noaa.gov/res/Programs/glansis/nas_database.html</u>.
- Habitat: Spring Viremia of Carp (SVC) is carried in the water column and survives long periods in wet mud.
- Fire Activities posing risk: Most concern is with virus free floating in the water column. Risks include: contact with untreated water; helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water.
- Environmental Effects: This virus is a major cause of disease and death in carp and 50 other fish species.

Method of Control for Firefighters	Details of Method	References	Notes
Temperature	HOT WATER: 122°F (50°C) for 5 minutes	Ahne 1976, cited in Bovo et al. 2005	
Drying	>28 days at 70°F (21°C)	Ahne 1982	
Mechanical	Scraping, brushing, washing and removing organics (e.g., mud)	Multiple sources	
CHEMICALS			
Quaternary ammonium compounds (e.g., alkyl dimethyl benzylammonium chloride [ADBAC]; diecyl dimethyl ammonium chloride [DDAC])	 0.4% Green Solutions High Dilution 256[®] solution Mixing instructions: ½ oz per 1 gallon water 0.4 gallon per 100 gallons water Contact time = 10 minutes 	EPA label Reg. No. 1839-167 (2010)	These mixing instructions are approved by EPA for closely related viruses in the same family, but not specifically for SVC.

Method of Control for Firefighters	Details of Method	References	Notes
Bleach (e.g., Clorox [®])	0.1% bleach solution (55 ppm sodium hypochlorite)	Ahne 1982, cited in	
6% sodium hypochlorite	Mixing instructions: ¼ teaspoon per 1 gallon water 11.5 oz per 100 gallons water Contact time: 2 minutes	Bovo et al. 2005	
Other Agents	 0.5% to 1%Virkon Aquatic[®] 5 g/liter to 10 g/liter for 10 minutes 0.1% Virkon Aquatic[®] 1 g/liter for 30 minutes 	Bowker et al. 2012	

Port Orford Cedar Root Disease (Phytophthora lateralis)

& Sudden Oak Death (Phytophthora ramorum)

Photo credit: USDA Forest Service

Photo credit: phytophthoradb.or

General Information:

- **Port Orford Cedar Root Disease Distribution:** WA, OR, CA. For most up-to-date information on distribution, please see: http://www.issg.org/database/welcome/.
- Sudden Oak Death Distribution: CA, OR. For most up-to-date information on distribution, please see: <u>http://www.issg.org/database/welcome/</u>.
- Habitat: Spores swim in standing water and can be carried large distances in flowing water; they also occur in soil.
- Fire Activities Posing Risk: Most concern is with spores carried in untreated water. Risks include: contact with untreated water; helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water.
- Environmental Effects: Port Orford cedars of all sizes may be killed by the root disease. Sudden oak death affects other trees as well as oaks, leading to widespread forest destruction.

Method of Control for Firefighters	Details of Method	References	Notes
"Regular Clorox [®] Bleach" 6% sodium hypochlorite	Add 1 gallon bleach to 1000 gallons of drafted water (~50 ppm sodium hypochlorite). Prepare the mixture at least 5 minutes prior to application for dust abatement, fire suppression, and cleaning vehicles and logging, road building, and maintenance equipment.	Ultra Clorox® Label (EPA Reg. No. 5813- 50) AND Southwest Oregon Interagency Fire Management Plan (USDA Forest Service 2013)	¹ See note below for application.

Method of Control for Firefighters	Details of Method	References	Notes
"Clorox [®] Germicidal Bleach" 8.25% sodium hypochlorite	Add % gallon bleach to 1000 gallons of drafted water (~50 ppm sodium hypochlorite). Prepare the mixture at least 5 minutes prior to application for dust abatement, fire suppression, and cleaning vehicles and logging, road building, and maintenance equipment.	Germicidal Healthcare Clorox [®] label (EPA Reg. No. 5813-100)	

¹Locate vehicle washing stations (with chlorinated water) where water will not run into streams. When refilling tenders/engines, fill with water first, pull 150' away from the stream (or where overland flow will not run back into the stream), and then add the chlorine. Avoid dropping buckets of or directly releasing chlorine-treated water into streams or wetlands. Don't treat water from streams that are uninfected with the root rot disease, unless it is for use at washing stations (to avoid unnecessary use of chlorine). (Southwest Oregon Interagency Fire Management Plan 2013)

Aquatic Invasive Plants

Aquatic Invasive Plants

General Information:

- **Distribution:** Varies based on species. For most up-to-date information on distribution, please see: <u>https://www.invasivespeciesinfo.gov/aquatics/main.shtml</u>.
- Habitat: Aquatic plants are usually confined to shorelines and relatively shallow portions of waterbodies, though plant pieces can float throughout.
- Fire Activities Posing Risk: Contact with untreated water; helicopter buckets, snorkels, and other drafting gear that capture bottom sediments, mud, or aquatic plants; internal tanks and hoses that retain residual untreated water.
- Environmental Effects: Non-native aquatic plants clog waterways and threaten the diversity and survival of native species.

Method of Control for Firefighters	Details of Method	References	Notes
Temperature	HOT WATER PRESSURE WASH: ≥140°F (60°C) for 2 minutes; inspect and re-treat as needed.	Blumer et al. 2009	This study is specific to Eurasian watermilfoil, but lethal temperatures likely comparable for other submerged species.
Mechanical	Scraping, brushing, high pressure washing and mud removal. Some seeds may remain viable after washing, so disposal or filtration of treated water is recommended.	Multiple sources	

REFERENCES

- Ahne, W. 1976. Untersuchungen über die Stabilität des karpfenpathogenen Virusstammes. Fisch Umwelt 2: 121-127.
- Ahne, W. 1982. Vergleichende Untersuchung ünte die Stabilitbi von vier fischpathogenen Viren (VHSV, PFR, SVCV, IPNV). Zentralblatt fen Veterinarmedizin, 29: 457-476.
- Alonso, A., and P. Castro-Diez. 2012. Tolerance to air exposure of the New Zealand mudsnail *Potamopyrgus antipodarum* (Hydrobiidae, Mollusca) as a prerequisite to survival in overland translocations. NeoBiota 14:67-74.
- Barbour, J., McMenamin, S., Dick, J., Alexander, M., and J. Caffrey. 2013. Biosecurity measures to reduce secondary spread of the invasive freshwater Asian clam, *Corbicula fluminea* (Müller, 1774). Management of Biological Invasions 4(3):219-230.
- Beyer, J, Moy, P., and B. DeStasio. 2011. Acute upper thermal limits of three aquatic invasive invertebrates: hot water treatment to prevent upstream transport of invasive species. Environmental Management 47:67-76.
- Blumer, D., Newman, R., and F. Gleason. 2009. Can hot water be used to kill Eurasian watermilfoil? J. Aquat. Plant Management 47: 122-127.
- Bovo, G., Hill, B., Husby, A., Hästein, T., Michel, C., Olesen, N., Storset, A., and P. Midtlyng. 2005. Pathogen survival outside the host, and susceptibility to disinfection- Work Package 3, Report QLK2-Ct-2002-01546 Fish Egg Trade, VESO, Oslo, Norway.
- Bowker, J.D., Trushenski, J.T., Gaikowski, M.P., and D.L. Straus, Editors. 2012. Guide to using drugs, biologics, and other chemicals in aquaculture. American Fisheries Society Fish Culture Section.
- Branstrator, D., Shannon, L., Brown, M., and M. Kitson. 2013. Effects of chemical and physical conditions on hatching success of *Bythotrephes longimanus* resting eggs. Limnol. Oceanogr 58:2171-2184.
- Britton, D.A., and S. Dingman. 2011. Use of quaternary ammonium to control the spread of aquatic invasive species by wildland fire equipment. Aquatic Invasions 6(2): 169-173.
- Choi, W.J., Gertenberger, S., McMahon, R., and W. Wong. 2013. Estimating survival rates of quagga mussel (*Dreissena rostriformis bugensis*) veliger larvae under summer and autumn temperature regimes in residual water of trailered watercraft at Lake Mead, USA. Management of Biological Invasions 4(1) 61-69.
- Cope, W. G., Newton, T. J., and C.M. Gatenby. 2003. Review of techniques to prevent introduction of zebra mussels (Dreissena polymorpha) during native mussel (Unionoidea) conservation activities. Journal of Shellfish Research 22(1): 177–184.
- Comeau, S., Rainville, S., Baldwin, W., Austin, E., Gerstenberger, S., Cross, C., and Wai Hing Wong. 2011. Susceptibility of quagga mussels (*Dreissena rostriformis bugensis*) to hot-water sprays as a means of watercraft decontamination, Biofouling, 27: 3, 267-274.
- Dwyer, W., Kerans, B., and M. Gangloff. 2003. Effects of acute exposure to chlorine, copper sulfate, and heat on survival of New Zealand mudsnails. Intermountain J. Sciences 9:53-58.

- EPA Service Bulletin, Germicidal Clorox (EPA Registration No 5813-100). 2013. http://www.clorox.com/pdf/5813-100_service-bulletins.pdf [accessed 3/2014].
- Gatenby, C., Morrison, P., Neves, R., and B. Parker. 2000. A protocol for the salvage and quarantine of unionid mussels from zebra mussel-infested waters. Proceedings Conservation, Captive Care, and Propagation of Freshwater Mussels Symposium, 1998:9-18.
- Havel, J.E. 2011. Survival of the exotic Chinese mystery snail (*Cipamgopaludina chinensis malleata*) measuring air exposure and implications for overland dispersal by boats. Hydrobiologia 668:195-202.
- Hedrick, R., McDowell, T., and K. Mukkatira. 2008. Effects of freezing, drying, ultraviolet irradiation, chlorine, and quaternary ammonium treatments on the infectivity of myxospores of *Myxobolus cerebralis* for *Tubifex tubifex*. Journal of Aquatic Animal Health 20:116-125.
- Hoffman, G.L., and M. E. Marliw. 1977. Control of whirling disease (*Myxosoma cerebralis*): use of methylene blue staining as a possible indicator of effect of heat on spores. J. Fish Biology 10:181-183.
- Hosea, R.C., and B. Finlayson. 2005. Controlling the spread of New Zealand mudsnails on wading gear. California Dept of Fish and Game, Office of Spill Prevention and Response, Administrative Report 2005-02.
- Johnson, M.L., Berger, L., Philips, L., and R. Speare. 2003. Fungicidal effects of chemical disinfectants, UV light, desiccation and heat on the amphibian chytrid *Batrachochytrium dendrobatidis*. Diseases of Aquatic Organisms 57:255-260.
- Jørgensen, P. 1974. A study of viral diseases in Danish rainbow trout: their diagnosis and control. Thesis, Royal Veterinary and Agricultural University, Copenhagen. 101pp.
- Kilroy, C., Lagerstedt, A., Davey, A., and K. Robinson. 2007. Studies on the survivability of the invasive diatom *Didymosphenia geminata* under a range of environmental and chemical conditions. Biosecurity New Zealand NIWA Client Report: CHC2006-116. National Institute of Water and Atmospheric Research LTD. Christchurch, New Zealand.
- Mattice, J., and L. Dye. 1976. Thermal tolerance of adult Asiatic clam. In: G. Esch and R. McFarlane (eds.), Thermal Ecology II: 130-135. US Energy Research and Development Admin., CONF-750425, National Technical Information Service, US Dept Commerce, VA.
- McMahon, R. 1996. The physiological ecology of the zebra mussel, *Dreissena polymorpha*, in North America and Europe. Amer. Zool. 36:339-363.
- McMahon, R.E, and C. Williams. 1984. A unique respiratory adaptation to emersion in the introduced Asian freshwater clam *Corbicula fluminea*. Physio. Zool. 57(2):274-279.
- McMahon, R.E, and C. Williams. 1986. Growth, life cycle, upper thermal limit and downstream colonization rates in a natural population of the freshwater bivalve mollusk, *Corbicula fluminea*, receiving thermal effluents. American Malacological Bulletin, Special Ed. 2:231-239.
- Matthews, L.J. 2007. Report on the use of quaternary ammonium disinfectants for Didygem (Didymo) disinfection. Vermont Agency of Natural Resources, Department of Environmental Conservation, Water Quality Division, Waterbury, VT.

- Mathews, M.A., and R.F. McMahon. Survival of Zebra Mussels (*Dreissena polymorpha*) and Asian Clams (*Corbicula fluminea*) under extreme hypoxia. U.S. Army Corps of Engineers, Waterways Experiment Station. Technical Report EL-95-3.
- Mitchell, A. J. and T.M. Brandt. 2005. Temperature tolerance of red-rim melania *Melanoides tuberculatus*, an exotic aquatic snail established in the United States. Transactions of the American Fisheries Society 134:126-131.
- Mitchell, A. J. and T.M. Brandt. 2009. Use of ice-water and salt treatments to eliminate an exotic snail, the redrim melania, from small immersible fisheries equipment. North American Journal of Fisheries Management 29(3): 823-828.
- Mitchell, A. J., and R. Cole. 2008. Survival of the faucet snail after chemical disinfection, pH extremes, and heated water bath treatments, North American Journal of Fisheries Management, 28:5, 1597-1600.
- Mitchell, A.J., Hobbs, M., and T.M. Brandt. 2007. The effect of chemical treatments on red-rim melania, *Melanoides tuberculata*, an exotic aquatic snail that serves as a vector of trematodes to fish and other species in the USA. North American Journal of Fisheries Management 27(4): 1287-1293.
- Modovski, C. 2011. [Personal communication]. Environmental Scientist, Labat Environmental, Broken Arrow, OK.
- Morse, J. 2009. Assessing the effects of application time and temperature on the efficacy of hot-water sprays to mitigate fouling by *Dreissena polymorpha* (zebra mussel Pallas). Biofouling 25(7):605-610.
- Pietsch, J., Amend, D., and C. Miller.1977. Survival of infectious hematopoietic necrosis virus held under various conditions. Journal of Fisheries Research Board of Canada 34: 1360-1364.
- Richards, D.C., P. O'Connell, and D.C. Shinn. 2004. Simple control method to limit the spread of the New Zealand mudsnail, *Potamopyrgus antipodarum*. American Journal of Fisheries Management 24:114-117.
- Root, S., and C.M. O'Reilly. 2012. Didymo control: increasing the effectiveness of decontamination strategies and reducing spread. Fisheries 37(10): 440-448.
- Schisler, G.J., Vieira, N., and P.G. Walker. 2008. Application of household disinfectants to control New Zealand mudsnails. North American Journal of Fisheries Management 28(4):1172-1176.
- Spaulding S.A. and L. Elwell. 2007. Increase in nuisance blooms and geographic expansion of the freshwater diatom *Didymosphenia geminata*. U.S. Geological Survey Open-File Report 2007-1425. USGS, Reston, Virginia.
- Stockton, K.A. 2011. Methods to assess control and manage risks for two invasive mollusks in fish hatcheries. M.S. Thesis, University of Idaho.
- Stockton, K.A., and C.M. Moffitt. 2013. Disinfection of three wading boot surfaces infested with New Zealand mudsnails. North American Journal of Fisheries Management 33:529-538.
- Stout, J. B., Avila, B., and E. Fetherman. 2016. Efficacy of commercially available quaternary ammonium compounds for controlling New Zealand Mudsnails *Potamopyrgus antipodarum*. North American Journal of Fisheries Management 36:277–284.

- USDA Forest Service. 2013. Southwest Oregon Interagency Fire Management Plan. Rogue River-Siskiyou National Forest. <u>https://www.fs.usda.gov/detail/rogue-siskiyou/home/?cid=stelprdb5314299</u> [accessed 3/2014].
- Yanong, R., and C. Erlacher-Reid. 2012. Biosecurity in Aquaculture, Part1: An Overview. Southern Regional Aquaculture Center, SRAC Publication 4707, February 2012.
- Wagner, E., Smith, M., Arndt, R., and D. Roberts. 2003. Physical and chemical effects on viability of the *Myxobolus cerebralis* triactinomyxon. Diseases of Aquatic Organisms 53: 133–142.